Catalogue - page 1

Affiche du document Les risques des nanotechnologies

Les risques des nanotechnologies

Claude WEISBUCH

1h21min47

  • Sociologie et anthropologie
  • Problèmes et services sociaux
  • Génie et activités connexes
Point de vue pour le débat sur les nanotechnologies de Claude Weisbuch
Alors qu'elles étaient associées au départ à des espoirs de percées majeures dans la plupart des secteurs scientifiques, technologiques et économiques, les nanotechnologies deviennent l'objet de critiques radicales, certains en appelant même à un moratoire sur ces recherches. Il convient d'en débattre publiquement, en commençant par rappeler certains faits de base: 1. Le concept de nanotechnologie a pris son essor a cause du programme américain conçu pour redonner un élan aux disciplines physico-chimiques, laissées en plan aux USA par la priorité donnée à la biologie par le parlement américain. 2. Il faut rappeler la différence entre nanosciences et nanotechnologies. La nanoscience vise à l'exploration des phénomènes nouveaux apparaissant aux dimensions nanométriques, les nanotechnologies à leur mise en oeuvre dans des produits, ces phénomènes nouveaux ayant des origines physiques très variées. Une différence majeure apparaît immédiatement: alors qu'en nanoscience l'objet nanométrique est tout a fait digne d'intérêt, pour les applications il faut ramener ces propriétés nouvelles à l'échelle humaine pour l'utilisateur. Par exemple, une molécule unique peut être passionnante et faire l'objet de nombreux travaux de recherche, elle ne sert à rien toute seule. 3. Il n'y a pas de nanotechnologie définie en tant que telle, mais un patchwork de technologies très disparates suivant les domaines, et l'impact de l'échelle du nanomètre peut être très général ou très spécialise. Ayant défini très rapidement les nanotechnologies, on peut alors essayer d'analyser les incertitudes et risques associés aux nanotechnologies. Un premier point: en général, les risques associés aux aspects nouveaux des nanotechnologies sont bien sûr à traiter de la même manière que toute les autres activités scientifiques, technologiques, industrielles (qui ne sont pas en butée par rapport a ce qu'il conviendrait de faire, on peut en convenir !):protection des opérateurs lors de l'élaboration, identification des risques (dangerosité et exposition) des utilisateurs, recyclage des objets en fin de vie. La polémique sur la nanotechnologie/les nanotechnologies vient de ce que les critiques radicaux disent qu'elles ne sont pas de même nature que les autres, et n'exposent pas aux mêmes risques, et que le paragraphe ci-dessus ne s'applique pas: 1. on ne voit pas les objets des nanotechnologies. Dans la plupart des cas, en fait, ces objets ne seront pas accessibles sous leur forme divisée, nanométrique, mais dans un matériau système a l'échelle humaine, bien visible: circuit intégré en nanoelectronique, matériau composite à très haute résistance, matériau pour turbines à haute température, matrice nanométrique pour purification ou dessalement de l'eau, biopuces pour diagnostic médical, ... 2. Les éléments nanométriques vont partout, et donc dans des endroits ou ils sont dangereux, par exemple les organes du corps humain. Ceci n'est vrai lors de l'utilisation que pour les médicaments et les cosmétiques ou l'efficacité nouvelle est apportée par l'utilisation de la matière divisée. En ce qui concerne les médicaments, on est dans une situation ou il faut effectivement étudier ce qui serait des effets secondaires, puisque le médicament irait ailleurs que la ou on souhaite qu'il aille. Ceci est la définition même des effets secondaires des médicaments, et la longue procédure habituelle de validation des médicaments est tout à fait adaptée à prendre en compte la spécificité des nanomédicaments. En ce qui concerne les cosmétiques, les tests habituels sont certainement à faire évoluer, avant la mise sur le marché. Les académies britanniques, poursuivant les travaux de leur remarquable rapport sur les potentiels et risques de nanotechnologies, appelent de leurs voeux une publication transparente des tests effectués par et pour les industriels. C'est certainement une excellente recommandation (on pourrait aussi le réclamer pour d'autres produits....). D'autres possibilités d'exposition à des nanoparticules existent lors de l'élaboration et de la dégradation. Lors de l'élaboration, avant la mise en oeuvre dans des objets macroscopiques, il faut savoir que l'on sait manipuler des substances autrement plus dangereuses dans l'industrie. Le problème sera là de mettre en oeuvre des nouvelles réglementations adaptées tenant compte de la dangerosité et du risque d'exposition, avec aussi des moyens de mesure et de contrôle. Pour ce qui est de la dégradation, on entre ici dans un problème important, urgent, pour tous les secteurs industriels existant. Nous avons de fortes lacunes dans l'analyse du cycle de vie des matériaux. Les critiques radicaux nous affirment que les nanomatériaux ne se dégraderont pas dans l'environnement. Rien ne permet de l'affirmer, ni le contraire d'ailleurs (comme pour beaucoup de produits fabriques de manière massive aujourd'hui). Ce que la nature nous montre, par contre, c'est que la dégradation de nombreux matériaux minéraux ou biologiques n'aboutit pas à des nanostructures se promenant librement. Il y a dans ce domaine de la dégradation des matériaux (nanos ou non) un grand domaine scientifique à maîtriser. 3. Les nanotechnologies permettront d'entrer dans des domaines ou il ne faut pas aller ( la maîtrise du vivant et le rêve/cauchemar de l'immortalité, le contrôle de l'individu par des nanorobots qu'on lui injecte à son insu), ou peuvent permettre in-fine la destruction de la planète par l'émergence d'une intelligence collective de nanoobjets auto reproducteurs qui échapperaient au contrôle de leurs créateurs dans une furie destructrice. On est la en pleine science fiction, avec zéro science et 100% de fiction. Ces phantasmes viennent de non scientifiques (romanciers, princes héritiers, ...) ou de scientifiques non-spécialistes (extrêmement souvent des informaticiens et roboticiens)ne connaissant pas les bases de la biologie, de la neurologie, de la chimie, de la physique, de la théorie de l'information, qui permettent de montrer simplement l'impossibilité de telles réalisations. Les nanotechnologies permettront plus sérieusement d'accéder à des connaissances qui poseront des problèmes accrus en matière de protection des libertés individuelles, en facilitant très largement des techniques aujourd'hui encore limitées: empreintes génétiques des individus, fichage informatique, ... Ces dangers existent déjà aujourd'hui, et il faudra d'une part veiller a la bonne application des protections individuelles prévues, d'autre part à la définition de nouvelles protections lorsque des risques nouveaux apparaîtront (à ce sujet le comite national d'éthique montre que l'on ne peut émettre de recommandations que sur des questions bien identifiées, et pas sur des sujets généraux). Il est certainement utile d'en débattre.
Résumé de Claire Weill
Le risque de ne pas savoir de quoi on parle Il y a une quinzaine d'années, l'apparition de la microscopie à champ proche a permis de « voir » et manipuler des atomes individuels. Depuis, l'industrie de la microélectronique a poursuivi sa démarche de miniaturisation conduisant à la fabrication de matériaux structurés à des échelles inférieures au millième de millimètre (micron). Ces approches respectivement ascendantes et descendantes pour l'étude de la matière ont légitimement ouvert de nouvelles voies pour la recherche scientifique à l'échelle du nanomètre, le millionième de millimètre. Parallèlement des développements industriels ont mis à profit ces deux approches. Dès lors, plusieurs facteurs concourent à la très grande instabilité des discours sur les « nanotechnologies » et les « nanosciences » aujourd'hui dans les media, voire même des informations dans des publications dans des revues spécialisées, y compris scientifiques : la science dont il s'agit est récente et une grande partie des développements industriels sont encore balbutiants et pour une grande part confidentiels. Du fait des promesses considérables formulées sur les potentialités des nanotechnologies dans les domaines de la santé, de l'énergie, de l'environnement, du traitement de l'information…, des moyens financiers très importants et en forte croissance ont été investis dans la recherche fondamentale et appliquée dans tous les pays industrialisés depuis 2000. Ces promesses sont à la mesure des impasses dans lesquelles se trouvent nos sociétés, dont l'impasse écologique (épuisement des ressources fossiles et ponction excessive des ressources renouvelables, changement climatique…). Ces promesses démesurées se sont nourries d'abus de langages, de glissements sémantiques, d'assertions peu, voire pas du tout étayées. Ainsi, pour les besoins de la cause, des pans entiers de certains champs scientifiques ont été rebaptisés « nanos ». Les sciences physiques, chimiques biologiques et de l'information investissent désormais l'échelle du nanomètre. Ceci ne signifie pas pour autant l'automaticité de synergies entre les développements technologiques issus de leurs applications éventuelles. Or, un tel argument a été largement utilisé, en regroupant les synergies annoncées sous le vocable inapproprié et trompeur de « convergence ». Celui-ci a néanmoins le mérite d'évoquer la notion de projets, ceux des différents lobbies qui ont construit puis promu le développement des nanotechnologies. Notons en outre qu'il est absurde de penser qu'un champ scientifique se définirait par une échelle de taille, or on n'hésite pas à parler de « nanoscience ». Enfin, le nanomètre n'est pas, et de loin, la plus petite échelle de la matière investie historiquement par les scientifiques, qu'il s'agisse des physiciens des particules ou des chimistes moléculaires. Le fantasme de manipuler des atomes tels les éléments d'un lego a été véhiculé par plusieurs ouvrages de science fiction aux Etats-Unis à caractère prophétique, voire apocalyptique (E. Drexler, « Engines of creation », Engins de création, 1986 ; M. Crichton, « Prey », La proie, 2002). Ceux-ci ont donné l'illusion au lecteur qu'il pouvait comprendre, voire palper par la pensée ce qui se jouait à l'échelle atomique. Ce fantasme fait fi toutefois des lois de la physique quantique, qui compliquent considérablement la donne. Il introduit également une confusion entre l'approche scientifique et celle de l'ingénieur. Il apparaît donc urgent de déconstruire un certain nombre de discours et de s'attacher à davantage de rigueur dès lors que l'on évoque la science et les développements technologiques qui se déroulent à l'échelle du nanomètre, et ce dans l'intérêt de tous : politiques, citoyens, scientifiques et industriels. Les risques sanitaires, environnementaux et éthiques des nanomatériaux Les nanomatériaux présentent pour les autorités publiques des difficultés spécifiques. Déjà commercialisés dans des produits, les nano - objets sont susceptibles de diffuser dans l'environnement de multiples manières et sous des formes variées (nanoparticules libérées par exemple lors de l'usure de matériaux renforcés comme les pneus verts) et de pénétrer dans le corps humain par les voies respiratoires ou par la peau (crèmes solaires). Or, les modes de production des nanoparticules en laboratoire tout comme en milieu industriel sont loin d'être stabilisés. En outre, on ne dispose pas aujourd'hui de méthodes satisfaisantes permettant d'avoir accès à leurs caractéristiques structurales, réactives, et par voie de conséquences à leurs propriétés toxicologiques et écotoxicologiques. Par suite, nous sommes encore très loin d'une harmonisation des normes à l'échelle internationale, pourtant nécessaire dans le contexte de la mondialisation du commerce. Le cadre réglementaire européen couvre en théorie les nanoparticules, isolées ou insérées dans des produits, sans toutefois les prendre précisément en compte. En particulier, le règlement sur les substances chimiques en passe d'être adopté en Europe, REACH, pourrait encadrer les risques liés aux nanoparticules en introduisant des critères de dangerosité tels que la forte réactivité potentielle due à leur très grand rapport surface sur volume et la diffusion potentielle dans le corps humain. Cependant, les outils juridiques resteront inefficaces aussi longtemps que des techniques de caractérisation des nanoparticules sur l'ensemble de leur cycle de vie – encore une fois, de quoi parle-t-on ? – ne seront pas accessibles aux régulateurs. L'étude, et par conséquent l'optimisation ab initio, du cycle de vie de certaines substances chimiques ou nanoparticules se heurte également à des problèmes méthodologiques majeurs. A cet égard, la production et la diffusion non contrôlée de nanoparticules pourrait être source de dommages pour lesquels l'imputation de la responsabilité est difficile, faute de tracabilité possible. Le développement industriel contrôlé et responsable des nanoparticules ne se fera donc pas sans franchir au préalable certaines étapes. Ceci exigera des efforts aussi bien des autorités publiques que des acteurs économiques, en particulier pour assurer l'existence et le maintien de ressources suffisantes en experts toxicologues et écotoxicologues dans leurs sphères respectives. Les questions éthiques associées à certains développements potentiels issus de nanotechnologies sont similaires à celles que posent des technologies existantes - en termes de protection de données privées notamment, mais aussi de brevetabilité du vivant, si l'on considère que les nanotechnologies recouvrent une partie des biotechnologies. Certes, les risques pourront être amplifiés par l'augmentation des capacités de stockage et de traitement de l'information qu'apporte la miniaturisation de la microélectronique, qui est d'ailleurs loin d'approcher l'échelle nanométrique. Cependant, l'arbre cachant souvent la forêt, certains usages de dispositifs non nanométriques mais rebaptisés « nano », comme l'utilisation de puces ADN, pourraient fragiliser les systèmes de santé des pays industrialisés, et accentuer encore s'il en était besoin les inégalités avec les pays en développement. Ainsi, l'exploitation de tests génétiques à fins de thérapies préventives personnalisées pourrait provoquer, si elle s'avérait fondée scientifiquement, l'apparition de traitements extrêmement onéreux inaccessibles au Sud et conduisant au Nord, soit à une augmentation considérable des coûts de santé publique, soit à une médecine à deux vitesses. Les nanotechnologies exemplifient une difficulté majeure pour nos sociétés technologiques : celle des rythmes différents Le développement de technologies conduisant à la mise sur le marché de nouveaux produits et systèmes s'effectue à un rythme si rapide qu'il ne permet pas aux Etats d'encadrer à temps les risques associés, lorsque cela est possible. En outre, les autorités publiques ne peuvent assumer seules la charge de développer les moyens techniques à cet effet. Par ailleurs, le paysage des risques avérés et potentiels qui résultent des activités économiques devient inextricable à un tel point que le gestionnaire de risques, en situation d'arbitrage impossible, se trouve confronté à des dilemmes sans fin. Le niveau d'indécidabilité augmentant, les gouvernements ont de plus en plus recours à des consultations de citoyens, afin d'estimer l'appréhension par la société de risques liés à des technologies émergentes. Ces nouveaux instruments de nos démocraties techniques, aussi intéressants et séduisants soient-ils soulèvent toutefois des questions difficiles. Ils ne pourront en particulier être utiles pour la progression des débats sur les questions aussi larges que disparates regroupées aujourd'hui sous le vocable de nanotechnologies qu'en sériant les problèmes. D'un autre côté, les bénéfices de technologies émergentes conduisant à des innovations radicales ne seront perceptibles bien souvent qu'à moyen ou long terme. Pour ce qui concerne les nanotechnologies, des pistes très intéressantes se dessinent dans le domaine médical, celui des économies d'énergie (lampes basse consommation, piles à combustibles, matériaux plus légers et plus résistants), du traitement des eaux et de la remédiation des sols. Il importe toutefois de garder à l'esprit que leur exploitation ne pourra survenir que dans les prochaines décennies, durant lesquelles les contraintes qu'exerce l'homme sur la planète s'intensifieront. A cet égard, un des risques politiques majeurs associé à l'engouement pour les nanotechnologies serait d'entretenir l'illusion que des solutions purement technologiques pourraient permettre de diminuer ces contraintes de manière significative à un horizon temporel pertinent.
Accès libre
Affiche du document Des écrans plats aux caméras mobiles : physique et téléphonie mobile

Des écrans plats aux caméras mobiles : physique et téléphonie mobile

Yvan BONNASSIEUX

57min15

  • Génie et activités connexes
Interview du conférencier : Yvan Bonnassieux, d'où vient votre passion pour la science ? Au risque d'être très classique, une soif de savoir, de comprendre le pourquoi, le comment. J'ai, il me semble, toujours eu le besoin de ne pas m'arrêter aux faits, mais de trouver les mécanismes sous-jacents. L'histoire et la physique ont toujours été pour moi les deux clefs pour comprendre le monde. J'avoue avoir longtemps hésité ; mais la science est pour moi, par sa quête d'avenir, le plus beau moyen de construire un monde meilleur. Comment devient-on maître de conférence à l'Ecole Polytechnique, et en quoi cela consiste-t-il ? Comme pour tout poste de l'enseignement supérieur, il s'agit d'un concours auquel on peut postuler une foi obtenue une thèse de doctorat. On postule sous la forme d'un dossier présentant son travail ses thématiques de recherche et ses publications et l'on est sélectionné, ou non, par un vote de l'ensemble des enseignants du département de physique de l'école Polytechnique. C'est un poste d'enseignant chercheur cela signifie que la tache est double : - Effectuer des enseignements pour les élèves de l'Ecole Polytechnique en l'occurrence sur l'électronique et le traitement du signal. - S'impliquer dans une thématique de recherche dans l'un des laboratoires de l'Ecole. Je suis ainsi responsable de l'équipe électronique grande surface au sein du Laboratoire de Physique des Interfaces et des Couches Minces (Ecole Polytechnique). Vous êtes physicien mais vous revendiquez une approche expérimentale, « une approche d'ingénieur », pouvez-vous nous en dire plus ? Tout d'abord je pense la séparation est factice ; la physique n'est que le moyen de prévoir le résultat d'une expérience. En même tant je travaille dans des thématiques que l'on nomme physique de l'ingénieur c'est à dire sur des recherches qui ont normalement des retombées dans le grand public à court terme. J'avoue que ce côté concret, où on peut avoir la chance de voir utiliser le fruit de ces découvertes, est pour moi une source importante de motivation. Vous travaillez avec de grands industriels (Philips, Thomson, Samsung), est-ce pour imaginer de nouvelles technologies ? Et lesquelles ? Je travaille sur le développement des écrans plats et les collaborations avec les industriels leaders mondiaux sont pour nous un soutien important et aussi un gage de reconnaissance. Plus précisément parmi les nouvelles technologies sur lesquelles nous travaillons je citerai plus particulièrement les écrans conformables et flexibles. C'est à dire la réalisation d'écrans non plans, de formes diverses et aussi à terme déformables, pliables ou déroulables. Pour vous les téléphones portables c'est quoi ? Tout d'abord un outil pratique permettant de rester connecté, où que l'on soit, par la voix ou le texte (SMS, mail) avec son monde. Mais aussi un formidable objet technologique mettant en oeuvre plein de découvertes scientifiques (transmission radio, codage, cryptage,..). Enfin parfois un objet un peu intrusif, qui nous dérange souvent de manière intempestive. ÉCOLE POLYTECHNIQUE 200 ans d'excellence scientifique et technique, une École résolument tournée vers l'avenir « Pour la patrie, les sciences et la gloire », Napoléon, 1804 L'École Polytechnique est la plus prestigieuse et l'une des plus anciennes Grandes Ecoles d'ingénieurs françaises. Créée sous la Révolution en 1794, elle doit son drapeau et sa devise à Napoléon. Le statut, dont les termes ont varié au fil du temps, est devenu celui d'un établissement public à caractère administratif en 1974. Les élèves de nationalité française conservent cependant le statut d'élève officier pendant leur scolarité ; les élèves étrangers ont un statut d'étudiant. L'encadrement militaire est en charge de l'essentiel de la formation éthique, humaine et sportive des élèves. La triple vocation de l'École Polytechnique est de former : • des scientifiques de réputation internationale (Monge, Gay-Lussac, Cauchy, Poincaré, Jacquard…) • de futurs hauts responsables au service de l'Etat (Bernard Larrouturou, directeur général du CNRS, Philippe Kourilsky, directeur général de l'Institut Pasteur, Valéry Giscard d'Estaing, ancien Président de la République Française…) • des dirigeants d'entreprises (André Citroën, Conrad Schlumberger, Carlos Ghosn, Président Directeur Général de Renault-Nissan…) Plusieurs polytechniciens ont choisi d'autres voies : le philosophe Auguste Comte, le champion de tennis Jean Borotra, l'architecte Paul Andreu… Le cycle ingénieur polytechnicien : une formation d'ingénieur en 4 ans Les élèves polytechniciens reçoivent une formation scientifique pluridisciplinaire de haut niveau complétée par un enseignement approfondi en sciences humaines et en langues ainsi que par des périodes de stages (15 mois répartis sur les 4 années de scolarité). L'encadrement militaire est en charge de la formation humaine des élèves. Celle-ci vise à développer leurs facultés d'adaptation et d'ouverture d'esprit, le sens du travail en équipe, du leadership et de l'intérêt général. Elle se concrétise notamment par des stages dans les armées ou dans des structures civiles (hôpitaux, prisons, associations caritatives ou de réinsertion, soutien scolaire…), par une pratique intensive du sport, par des manifestations culturelles, par une implication importante dans la vie de l'Ecole. Les polytechniciens se destinent pour 60% d'entre eux à l'entreprise. 15% choisissent la recherche et 25% les administrations françaises et internationales. Les masters : une formation de pointe au niveau européen Dans le cadre de l'harmonisation européenne, l'École Polytechnique propose des masters dans ses domaines d'excellence. Cette formation en 2 ans s'articule autour d'une composante recherche et d'une formation professionnelle de haut niveau comprenant un stage en entreprise ou en milieu de recherche. Elle est ouverte aux étudiants français et étrangers à partir du niveau licence. L'admission se fait sur dossier.
Accès libre
Affiche du document Grands défis et nouvelles pistes pour demain

Grands défis et nouvelles pistes pour demain

Rémi BASTIEN

1h04min28

  • Génie et activités connexes
Une conférence du cycle : Qu'est-ce qu'un ingénieur aujourd'hui ? L'ingénieur, le génie, la machine du 10 au 14 janvier et du 16 au 19 janvier 2010, à 18h30
Grands défis et nouvelles pistes pour demain par Rémi Bastien, directeur de la recherche, des études avancées et des matériaux chez Renault
L'automobile est née en 1886 avec Daimler, si on met de côté le Fardier de Cugnot. Au début, cette invention a été réservée à quelques avant-gardistes fortunés. Très vite, elle a passionné les ingénieurs et les inventeurs. La première voiture à atteindre le 100km/h a été la "Jamais Contente" en 1898? et c'était une voiture électrique. Louis RENAULT était surnommé l'homme aux 500 brevets. Il a notamment inventé le turbo-compresseur. Avec Henry FORD, l'automobile s'est démocratisée et son célèbre modèle T a permis à des millions d'Américains de se déplacer en famille. Après la 2° guerre mondiale, la 4CV RENAULT amplifie le mouvement et permet aux familles Françaises de profiter pleinement de leurs semaines de congé payés. Le 20° siècle a été profondément influencé par l'automobile et celle-ci a été une source de progrès pour l'humanité en lui permettant une mobilité individuelle et une grande liberté. Le métier d'ingénieur a pu exercer tout son talent car l'automobile fait intervenir toutes les sciences de l'ingénieur, de la mécanique des solides et des fluides à la thermodynamique en passant par la chimie, la résistance des matériaux et l'électricité.

Mais à la fin du 20° siècle, à partir des années 80, l'image de cet objet qui avait entrainé une grande partie du progrès technique, qui faisait "rêver" tant de jeunes, qui était synonyme de liberté, a progressivement pâli. Le nombre de morts sur les routes, les encombrements, la pollution atmosphérique et plus généralement l'impact sur l'environnement ont fini par entamer l'image de l'automobile. Au début de ce 21° siècle, nous sommes donc à un point de non retour. Et toute l'industrie automobile est confrontée à de nouveaux défis pour que ce vecteur de liberté continue à être une source de progrès pour l'humanité, et ceci en protégeant notre planète. Là encore, les ingénieurs sont devant un défi à leur mesure et sont prêts à se mobiliser, à utiliser toutes les sciences et techniques modernes pour que la mobilité individuelle par véhicule auto-mobile contribue pleinement à ce progrès durable. Le plus grand défi est certainement pour les pays du "BRIC": quel accès pour leur classe moyenne à un objet très peu cher, respectant l'environnement et communicant Dans le domaine de la sécurité, la connaissance de la bio-mécanique a permis de concevoir des véhicules qui protègent de mieux en mieux les occupants des véhicules. L'apport de l'électronique, de la pyrotechnie et des matériaux innovants à été déterminant. Les progrès à venir viendront encore de l'électronique et des différents capteurs qui permettront d'éviter les collisions, et spécialement envers les usagers vulnérables de la route que sont les cyclistes et les piétons. Pour ce qui concerne l'environnement, la réduction des émissions toxiques a été extrêmement rapide avec les normes Américaines et Européennes. En Europe, en 20 ans, les émissions des véhicules lancés sur les marchés ont diminué de près de 90% en moyenne (de 98% pour les particules des moteurs Diesel). Le CO2 a été réduit de 25% sur la même période. Enfin la maîtrise du cycle de vie prend de plus en plus d'importance avec la montée en puissance du recyclage. Dans le domaine de l'environnement, toute la profession se mobilise pour tendre vers le "zéro" impact environnemental. Là encore, toutes les sciences et techniques de l'ingénieur sont mobilisées. L'électrification des chaines de traction, qui est un axe stratégique de l'alliance RENAULT/NISSAN, va prendre de plus en plus d'importance, complétant les efforts énormes engagés sur les motorisations conventionnelles, sur la maîtrise de l'énergie à bord et sur l'allègement des véhicules. Le développement de nouveaux matériaux à faible empreinte environnemental s'accélère également ainsi que leur recyclabilité. Par ailleurs, nous travaillons à offrir une qualité de vie à bord des véhicules qui soit un prolongement du lieu de vie de ses occupants, leur donnant une continuité dans la télécommunication et du bien-être à bord. Enfin, le véhicule auto-mobile s'intégrera de plus en plus dans une chaine de mobilité intermodal, et nous travaillons à offrir cette inter-modalité la plus simple et conviviale possible. Et pour que l'automobile assure ce rôle de vecteur de progrès, il nous faut offrir tout cela pour des prix de plus en plus abordables, notamment pour que ce progrès soit accessible à tous, et donc évidemment aux habitants des pays émergents comme l'Inde ou la Chine. Et là encore, les ingénieurs devront mobiliser toute leur ingéniosité pour trouver les techniques de production les plus efficaces, les plus simples, les plus économiques.

L'être humain a toujours eu une grande soif de liberté, de liberté de mouvement. L'automobile a joué un rôle majeur dans le développement des sociétés industrialisées et accompagne celui des pays du BRIC de la même façon. Le grand défi qui est devant nous est que ce vecteur de liberté, que représente l'automobile, se renouvelle pour permettre cette liberté en préservant notre planète et en offrant un niveau de sécurité comparable aux transports publics les plus sûrs, et cela au plus grand nombre sur la planète, dans un système de mobilité intermodal. Les ingénieurs sont motivés par ce formidable défi, et RENAULT s'engage résolument pour être le pionnier de la mobilité durable pour tous."
Accès libre
Affiche du document L'informatique de demain : de Von Neumann aux superprocesseurs

L'informatique de demain : de Von Neumann aux superprocesseurs

François ANCEAU

1h19min27

  • Savoir et communication
  • Génie et activités connexes
L'évolution du matériel informatique est certainement le phénomène technique qui a connu la progression la plus importante pendant ce demi-siècle. L'apparition de la microélectronique a permis, sur les trente dernières années, une augmentation de la performance des microprocesseurs par un facteur d'environ 100 000, tandis que le prix des machines informatiques était divisé par plusieurs dizaines. Sous la pression des utilisateurs, la course à la performance semble insatiable. Les concepteurs des nouvelles machines informatiques rivalisent d'ingéniosité pour arriver à exécuter les programmes de plus en plus rapidement. L'organisation interne des processeurs modernes s'apparente à des sortes de "chaînes de montage" dans lesquelles plusieurs instructions sont simultanément en exécution. Ces techniques tiennent souvent de l'acrobatie. En effet, la recherche effrénée de la vitesse de traitement incite, par exemple, à utiliser des résultats intermédiaires avant même qu'ils n'aient été élaborés, en spéculant sur la valeur qu'ils devront avoir. Cette course folle se poursuit sans qu'aucun signe de fléchissement ne se fasse sentir. On constate même actuellement une accélération de sa vitesse d'évolution. Les études prospectives laissent à penser que ce rythme va se poursuivre pendant au moins encore dix ou vingt ans.
Accès libre
Affiche du document L'homme dans l'espace, les vols habités

L'homme dans l'espace, les vols habités

Arlène AMMAR-ISRAEL

1h13min11

  • Astronomie, Astrophysique, Recherche spatiale, Géodésie
  • Génie et activités connexes
Depuis les débuts de l'ère spatiale, il y a environ un demi-siècle, les vols habités ont occupé une place privilégiée dans l'histoire scientifique et technologique moderne, compte tenu de leur caractère exceptionnel. L'espace est particulièrement hostile à l'homme : absence de pesanteur, radiations, confinement, températures extrêmes, vide.... Progressivement, les difficultés de la vie et du travail dans l'espace, ont été surmontées, grâce en particulier à l'analyse des mécanismes en jeu et aux progrès de la technologie, à une sélection et un entraînement des astronautes très rigoureux et à l'emploi de contre-mesures. Pour retracer l'histoire des vols habités, nous rappellerons comment la conquête spatiale qui a été l'un des grands sujets de compétition de la guerre froide, a conduit à l'envoi du premier homme dans l'espace suivi du programme Apollo, de la navette spatiale et des stations orbitales. Aujourd'hui la Station Spatiale Internationale, le plus grand programme civil en coopération au niveau mondial, est en construction et la Station sera opérationnelle en 2004. Des études sont en cours aux États-Unis, en Russie et en Europe pour préparer l'exploration de Mars par l'homme qui pourrait avoir lieu à partir de 2020. Enfin, nous essaierons de mieux faire comprendre les enjeux scientifiques et économiques de ces missions à partir d'exemples significatifs tels que la maintenance et la réparation du Télescope Spatial Hubble, la mission franco-russe Perseus sur la station orbitale MIR au cours de laquelle en 1999 J. P. Haigneré a séjourné six mois dans l'espace, le programme français de préparation à l'utilisation de la Station Spatiale Internationale.... Hub : Hub :
Accès libre
Affiche du document Voir le cerveau penser

Voir le cerveau penser

Denis LE BIHAN

1h16min21

  • Sciences de la vie, Biologie
  • Sciences médicales. Médecine
  • Génie et activités connexes
L'imagerie par Résonance Magnétique (IRM) permet depuis une vingtaine d'année de produire des images de l'anatomie ‘statique' du cerveau, c'est-à-dire des coupes virtuelles montrant les détails des structures cérébrales (matière grise, matière blanche) avec une précision millimétrique. Cette imagerie ‘anatomique' est utilisée par les radiologues pour la détection et la localisation de lésions cérébrales. Plus récemment, l'IRM est aussi devenue ‘fonctionnelle' (IRMf), montrant l'activité des différentes structures qui composent notre cerveau. L'imagerie neurofonctionnelle par IRMf repose sur deux concepts fondamentaux. Le premier, soupçonné depuis l'Antiquité mais clairement mis en évidence au siècle dernier par les travaux du chirurgien français Paul Broca, est que le cerveau n'est pas un organe homogène, mais que chaque région est plus ou moins spécialisée dans sa fonction. Le deuxième, suggéré par l'anglais Sherrington à la fin du siècle dernier, est que les régions cérébrales actives à un moment donné voient leur débit sanguin augmenter. C'est cette augmentation locale et transitoire de débit sanguin, et non directement l'activité des neurones, qui peut être détectée par l'IRMf et par la caméra à émission de positons (autre méthode d'imagerie neurofonctionnelle). En pratique, il suffit donc d'acquérir des images représentant le débit sanguin en chaque point de notre cerveau quand il exécute une tâche particulière (motrice, sensorielle, cognitive,...) et dans une condition de référence neutre. A l'aide d'un traitement informatique de ces images, on peut extraire les régions cérébrales pour lesquelles le débit sanguin a changé entre la condition de contrôle et l'exécution de la tâche et en déduire que ces régions ont participé à cette tâche. Ces régions sont reportées en couleurs sur l'anatomie cérébrale sous-jacente. Bien que l'imagerie neurofonctionnelle, aujourd'hui, ne permette pas de descendre à l'échelle des neurones, les exemples rassemblés dans ces pages tendent à montrer que les circuits cérébraux utilisés par l'activité de ‘pensée' sont communs avec ceux utilisés par des processus de perception ou d'action réels. Ce résultat n'est pas surprenant a priori, si on considère que certaines formes de pensée (créer et voir une image mentale, imaginer une musique, inventer une histoire, évoquer des souvenirs...) ne sont autres que des simulations ou reproductions internes d'évènements que nous avons vécus ou que nous pourrions vivre. Au delà de l'identification des régions impliquées dans les processus cognitifs, des travaux en cours laissent présager qu'un jour nous pourrions peut-être même avoir accès en partie à la nature de l'information traitée par les différentes régions de notre cerveau, et donc, d'une certaine manière, à une petite fraction du contenu de nos pensées...
Accès libre
Affiche du document Les égouts et l'évacuation des déchets

Les égouts et l'évacuation des déchets

Jean-Marie MOUCHEL

1h26min51

  • Sciences de la vie, Biologie
  • Généralités
  • Génie et activités connexes
Après de nombreux siècles où l'alimentation en eau de Paris, et par voie de conséquence, son réseau d'égout sont restés fort limités, un essor considérable a été donné au réseau au milieu du 19e siècle, et il s'est poursuivi jusqu'à aujourd'hui. Parmi les projets initiaux, certains prévoyaient la création d'une ville souterraine, où seraient réalisées nombreuses des basses besognes nécessaires au fonctionnement et au prestige de la partie visible (et "hygiénisée") de la ville. Les réseaux souterrains devaient ainsi assurer le transport de l'eau mais aussi de nombreuses marchandises ou déchets. Dans le même temps, l'alimentation en eau potable généralisée, et l'élimination des eaux souillées hors de la ville, devenait un objectif prioritaire pour des raisons sanitaires. Les épidémies de choléra du milieu du siècle furent un des facteurs déclenchant le développement des projets de Belgrand à l'époque ou Haussmann rénovait la partie visible de Paris. Une particularité des égouts de Paris est la taille des canalisations, qui les rend en tout point visitables, ce qui leur confère un cachet tout particulier. Ils ont d'ailleurs toujours été visités, par les égoutiers chargés de leur entretien en premier lieu, mais aussi par de nombreux visiteurs qui accèdent aujourd'hui au musée des égouts situé dans le réseau. Dans la dernière partie du 19e siècle fut instauré le principe du tout-à-l'égout, mais sa mise en oeuvre complète, visant à l'élimination de toutes les fosses chez les particuliers, dura plusieurs décennies et se poursuivit au début du 20ième siècle. Le réseau devint unitaire, évacuant à la fois les eaux usées et les eaux de chaussées (eaux du lavage de rues, eaux de ruissellement pluvial etc.). Pour des raisons techniques, et pour éviter des déversements en Seine à l'intérieur de Paris, Belgrand a basé l'architecture du réseau sur un collecteur central qui rejoignait directement la Seine à Clichy.
Le développement de la ville, et la mise en oeuvre du tout-à-l'égout ont considérablement augmenté la quantité de pollution déversée. A la fin du 19ième siècle, une solution basée sur l'épuration par le sol fut développée pour traiter les eaux avant leur arrivée en Seine. Des champs d'épandage furent installés dans la presqu'île de Gennevilliers puis plus à l'aval (Achères, Triel…), la ville de Paris devint propriétaire fermier et favorisait une intense activité de maraîchage. Au moment de l'exposition universelle à la toute fin du siècle, presque toutes les eaux collectées étaient envoyées vers les champs d'épandage. Cependant, la course en avant devait continuer, de plus en plus d'eau étant utilisée et devant être évacuée puis traitée dans une ville en constante expansion, alors que la pression foncière réduisait la superficie des champs d'épandage. Dès le début du 20ième, les rejets d'eaux usées en Seine reprirent de plus belle. Après de nombreux essais menés sur les pilotes par la ville de Paris, la première station d'épuration moderne à boues activées fut construite à Achères en 1938 (aujourd'hui "Seine-Aval"), et ne fut réellement alimentée que plusieurs années après la guerre. Dans les filières de traitement d'une telle station, comme dans le sol, des micro-organismes se développent en digérant les matières organiques et les transforment en gaz carbonique et en sels. Les matières solides transportées dans l'eau des égouts et les micro-organismes produits au cours du traitement sont rassemblés pour constituer les boues d'épuration. D'autres filières sont chargées du traitement des boues qui sont épaissies, pressées, éventuellement digérées avant d'être épandues sur des terres agricoles, mises en décharge ou encore incinérées. Depuis la fin de la deuxième guerre mondiale, le processus de construction de nouveaux réseaux et de nouvelles stations de traitement des eaux n'a cessé de se développer. A partir des années 70, on cessa de créer des réseaux unitaires pour passer au système séparatif. Dans un réseau séparatif, les eaux pluviales sont collectées dans un réseau séparé des eaux usées domestiques ou industrielles. Les eaux pluviales sont évacuées directement vers le milieu récepteur, alors que les eaux usées sont envoyées vers les stations d'épuration. Un avantage très significatif de ce type de collecte est que les flots reçus par les stations de traitement sont beaucoup plus réguliers, et qu'il n'y a pas de risques de surcharge du système en temps de pluie. Par contre, ce système nécessite une surveillance accrue des "mauvais branchements" d'eaux usées sur le réseau pluvial, et ne permet pas de traiter les eaux de ruissellement qui peuvent être fortement contaminées. Les stations de traitement sont devenues plus efficaces et plus flexibles dans leur gestion, ce qui permet notamment de traiter une fraction toujours croissante des eaux de temps de pluie dans les réseaux anciens unitaires, et de résoudre en grande partie graves problèmes dues aux déversements de temps de pluie dans le réseau unitaire. De nouvelles stations ont été construites en différents points de l'agglomération parisienne pour des raisons techniques, parce qu'il devenait techniquement difficile d'acheminer les eaux sur de très longues distances vers un point de traitement unique à l'aval, mais aussi pour des raisons éthiques et politiques pour que soit mieux partagées les nuisances dues au traitement. Le devenir des boues est toujours un problème aujourd'hui car elles peuvent contenir des contaminants persistants en quantité excessive. Alors que les matières organiques contenues dans les boues constituent des amendements utiles aux cultures, les contaminations doivent être évitées. Des efforts très importants ont été faits dans l'agglomération parisienne pour limiter le rejets de contaminants dans le réseau. Cette politique de réduction à la source a porté ses fruits puisque les teneurs en certains métaux dans les boues de la station "Seine-Aval" ont diminué de plus qu'un facteur 10 en 20 ans. L'évolution actuelle va vers des réseaux et des méthodes de traitement plus diversifiées. Le développement de stations de traitement va se poursuivre en différents points de l'agglomération parisienne, alors que l'interconnexion du réseau unitaire devient une réalité, qui permet une meilleure gestion des eaux en temps de pluie. Dans le même temps les eaux pluviales sont de plus en plus souvent retenues ou traitées à l'amont des bassins versants pour limiter le ruissellement excessif. Il aura donc fallu plus d'un siècle pour que la grande ligne directrice "tout vers l'aval" qui avait été instaurée par Belgrand soit remise en cause. Il aura fallu un siècle également pour que l'objectif "zéro rejets par temps", atteint au début du siècle lors de l'exposition universelle, soit de nouveau atteint. Le réseau d'assainissement fait donc bien partie de ces patrimoines techniques urbains fondamentaux qu'il faut gérer aujourd'hui en pensant aux générations futures.
Références utilisées dans cette conférence : "Atlas du Paris Souterrain", par Gilles Thomas et Alain Clément, Ed. Parigramme, 2001. "Paris Sewers and Sewermen, realities and representations", par D. Reid, Harvard University Press, 1991. "Les égouts de Paris, une ville sous la ville", plaquette de présentation des égouts, Mairie de Paris "Rendre l'eau à la vie, 1970/1995, 25ième anniversaire du SIAAP", par M.F. Pointeau, Ed. CEP Euro Editions. "La Seine en son Bassin", M. Maybeck, G. de Marsily et E. Fustec (editeurs), publié par Elsevier en 1998.
Accès libre
Affiche du document Géographie et observation par satellite

Géographie et observation par satellite

Catherine MERING

1h15min48

  • Sciences de la vie, Biologie
  • Génie et activités connexes
  • Méthodes de la géographie. Explorations et voyages
La géographie s'intéresse aux structures spatiales et aux processus d'origine anthropique et naturelle qui les produisent. La question se pose alors d'observer ces structures de la façon la plus objective et la plus directe possible. Depuis l'avènement de la photographie aérienne et de la télédétection, les géographes ont à leur disposition une source d'information irremplaçable pour observer, analyser et cartographier ces structures sous leur forme la plus directement perceptible et mesurable, c'est à dire les paysages.
Les photographies aériennes, qui ont été prises de façon systématique à partir des années 50 leur permettaient déjà d'observer le paysage en laboratoire, d'en délimiter les différentes unités pour produire des croquis interprétatifs et enfin des cartes. Au début des années 70, les images multispectrales, prises de façon systématique sur l'ensemble du globe par le satellite Landsat MSS inauguraient la série de prises de vue périodiques de la surface terrestre sous forme d'images numériques. Les méthodes statistiques et informatiques allégeaient désormais sa tâche en classant automatiquement les points de l'image, l'aidant ainsi à produire plus rapidement et de façon plus objective une carte des paysages de la scène étudiée. L'avancée incontestable que constituait la télédétection satellitaire et l'accès aux images numériques de la Terre, ne remettait pas en cause l'intérêt des photographies aériennes . En effet, le pouvoir de résolution de ces nouvelles images était encore insuffisant puisqu'il ne permettait pas de distinguer les tissus urbains, les lieux d'habitats dispersés, ni les paysages complexes et discontinus comme les steppes et les savanes de la zone intertropicale.
Les satellites SPOT et Landsat Thematic Mapper, lancés au milieu des années 80, allaient combler ce fossé: il était désormais possible d'étudier de nombreuses catégories de paysages, quel que soit leur niveau de complexité. Un problème demeurait cependant : les prises de vues effectuées par les capteurs comme ceux de SPOT et Landsat dits "passifs" parce qu'ils ne font qu'enregistrer l'énergie renvoyée par la surface, sont difficilement exploitables en période de forte nébulosité où les paysages sont totalement masqués par les nuages. Mais depuis les années 90, grâce aux images radar des satellites ERS et JERS , l'observation des paysages peut se faire indépendamment des conditions climatiques et météorologiques, ce qui ouvre la voie à l'étude par satellite des zones tropicales et équatoriales où l'atmosphère est rarement limpide ou ceux des zones boréales éclairées la plupart du temps par une lumière rasante.
Les géographes, disposent donc aujourd'hui d'une immense banque d'images sur les paysages terrestres. Ces archives, acquises depuis environ un demi-siècle continuent de s'enrichir d'images numériques produites par des capteurs passifs ou actifs, prises sous des angles variés et à des résolutions de plus en plus grandes. A l'aube du troisième millénaire, il ne s'agira plus seulement pour eux de faire un inventaire des paysages en les cartographiant, mais d'analyser et de mesurer leurs transformations : En effet, ces transformations qu'elles soient très rapides quand elles sont dues à des catastrophes naturelles, comme les séismes, les éruptions volcaniques, les cyclones ou les inondations ou plus lentes lorsqu'elles sont liées à l'évolution des sociétés telles la déforestation, la déprise agricole ou la croissance urbaine sont désormais directement observables par télédétection.
Accès libre
Affiche du document La conception des barrages

La conception des barrages

Bernard TARDIEU

1h00min48

  • Génie et activités connexes
Les barrages participent au développement de plusieurs façons. Dans les territoires où la ressource hydrique est irrégulière, ils permettent de régulariser les débits d'eau pour les besoins de l'irrigation (c'est l'objet de plus des deux tiers des barrages), de l'eau domestique et industrielle. Ils participent à l'écrêtement des pics de crue et permettent dans certains cas d'améliorer la navigabilité des fleuves. Dans les territoires riches en ressources hydriques, ils sont un des éléments de la production d'énergie hydroélectrique, une énergie renouvelable et très flexible dans son adaptabilité aux variations de la demande électrique.
Comme le barrage d'Assouan une génération plus tôt, le barrage des Trois Gorges, en Chine, a beaucoup fait parler de lui. Le projet sera présenté ainsi que les différents points de vue. Plus encore que d'autres grands ouvrages d'infrastructure, les barrages, par les changements qu'ils apportent, favorisent des populations et en défavorisent d'autres. Des progrès notables ont été effectués pour mieux prendre en compte les populations défavorisées, surtout les plus fragiles, et intégrer leur développement dans le projet global. Cet aspect essentiel sera également développé. D'un point de vue plus technologique, on présentera les différents types de barrages et notamment les nouvelles technologies qui permettent de construire de façon plus économique et plus efficace. Les barrages en construction se trouvent en majorité dans les pays émergents.
Accès libre
Affiche du document Les matériaux intelligents

Les matériaux intelligents

Joël DE ROSNAY

1h11min28

  • Génie et activités connexes
  • Génie chimique et techniques connexes, chimie industrielle
Nous avons été habitués aux matériaux traditionnels (bois cuir, laine...) et connu la révolution des matières plastiques et des composites. Voici celle des matériaux intelligents capables de changer de forme, de couleur ou de conductivité en fonction de leur environnement. Les alliages à mémoire de forme, les matériaux piézo-électriques, magnétoscrictifs ou électrorhéologiques connaissent déjà de nombreuses applications. Des exemples en sont donnés dans le domaine de l'aérospatiale, de l'automobile, de la médecine, de la robotique ou du bâtiment. Mais déjà, de nouveaux matériaux intelligents sortent des laboratoires, s'inspirant de plus en plus des propriétés des systèmes biologiques. Grâce aux nanotechnologies, à des outils comme le microscope à effet tunnel ou le microscope à force atomique, il devient possible de les produire par un usinage à l'échelle de l'infiniment petit. On crée notamment des structures supramoléculaires, des polymères conducteurs et semiconducteurs, des textiles intelligents, des membranes sélectives ou des peaux artificielles. Avec de nombreuses applications dans le domaine militaire, dans celui de l'informatique et des microprocesseurs, dans la bioélectronique ou les biocapteurs. Le futur des matériaux intelligents passe par une intégration de plus en plus étroite entre supports physiques et biomatériaux. Le bio-ordinateur à ADN, les nanolabos, les MEMS, ou les biopuces implantables fascinent et inquiètent tout à la fois les scientifiques et le public. Un diaporama présente les avancées les plus récentes dans ces domaines. Les matériaux intelligents du futur ouvrent la voie à des interfaces plus étroites entre l'homme et les machines, conduisant progressivement à l'émergence de " l'homme symbiotique ".
Accès libre

...

x Cacher la playlist

Commandes > x
     

Aucune piste en cours de lecture

 

 

--|--
--|--
Activer/Désactiver le son