Documents pour «chimie organique»

Documents pour "chimie organique"
Affiche du document Plantes, organismes marins, microorganismes : sources de médicaments anticancéreux

Plantes, organismes marins, microorganismes : sources de médicaments anticancéreux

Françoise GUERITTE

1h15min49

  • Chimie, Cristallographie, Mineralogie
  • Sciences de la vie, Biologie
  • Sciences médicales. Médecine
Depuis l'Antiquité, de nombreux extraits de plantes ont été utilisés pour soigner certaines maladies liées à une croissance cellulaire anormale. Les tablettes d'argile de la médecine sumérienne (IIIe millénaire av. J.-C.), les papyrus égyptiens (papyrus Ebers 1600 ans av. J.-C.), les manuscrits de la médecine chinoise (Pen T'saos), grecque, romaine ou arabe, ainsi que ceux, plus récents, provenant de l'occident décrivent de nombreuses espèces de plantes utilisées en médecine traditionnelle pour traiter ce type d'affections. Certaines de ces plantes, mais aussi des organismes marins et des microorganismes étudiés pour leur activité biologique, ont montré une activité cytotoxique réelle sur des lignées de cellules cancéreuses, et leur étude chimique a conduit à l'isolement de produits antitumoraux plus ou moins performants. Ainsi, de nombreux médicaments doivent leur existence à la biodiversité du milieu naturel. Selon une revue récemment publiée, plus de 50 % des médicaments utilisés aujourd'hui en chimiothérapie anticancéreuse sont d'origine naturelle. Par origine naturelle, il faut entendre les produits directement isolés de sources naturelles, mais aussi les analogues de produits naturels obtenus par hémisynthèse ou par modification chimique de ces derniers et les produits synthétiques dont la structure a été copiée sur un modèle naturel. Quelques exemples de substances naturelles antitumorales seront présentés ainsi que les méthodes utilisées aujourd'hui pour découvrir de nouvelles molécules d'intérêt biologique et thérapeutique.
Accès libre
Affiche du document Voir les cellules communiquer

Voir les cellules communiquer

Christian AMATORE

1h28min32

  • Chimie, Cristallographie, Mineralogie
  • Sciences de la vie, Biologie
  • Sciences médicales. Médecine
Nos cellules "communiquent" chimiquement en échangeant des "molécules-mots" : hormones, neurotransmetteurs, etc. Le dialogue entre neurones dans notre cerveau est ainsi intimement lié à leurs échanges de petites bouffées de neurotransmetteurs de proche à proche. Beaucoup est déjà connu en physiologie et en biologie sur ce domaine, mais il reste encore très mystérieux car nos connaissances sur le sujet sont encore limitées par des difficultés expérimentales. Cela se comprend aisément lorsque l'on sait que ces échanges impliquent seulement quelques milliers de molécules-mots en quelques millièmes de seconde. De même, les neurones étant incapables de stocker leur énergie, ont une activité impliquant un couplage très fin avec le système neurovasculaire qui irrigue le cerveau. En d'autres termes, lorsqu'un neurone "communique avec ses partenaires", il doit simultanément "réclamer" un accroissement du flux sanguin à son voisinage immédiat. C'est précisément cette modulation locale du flux sanguin qui est observée en temps réel par imagerie IRM ou par caméra à positons (PET scan) avec des conséquences importantes en médecine ou en sciences cognitives. Néanmoins, le phénomène observé n'est que le résultat d'un échange de neurotransmetteur, le NO, sous-jacent comme nous le démontrerons au cours de cette conférence. Au cours de cette conférence nous expliquerons comment des électrodes extrêmement petites (entre une vingtaine et une cinquantaine d'entre elles, réunies en faisceau, auraient l'épaisseur d'un seul cheveu humain !) peuvent être utilisées afin de "voir les cellules parler". Nous montrerons ensuite comment les données expérimentales ainsi obtenues permettent de remonter aux mécanismes physicochimiques mis en jeu, c'est-à-dire de "comprendre comment elles parlent". voir le site internet : : http://helene.ens.fr/w3amatore/
Accès libre
Affiche du document La catalyse

La catalyse

Christian MINOT

1h07min59

  • Chimie, Cristallographie, Mineralogie
La plupart des réactions biologiques qui forment le corps humain sont des réactions catalytiques. La catalyse joue un rôle également déterminant dans des processus industriels majeurs comme la synthèse de l'ammoniac, le raffinage du pétrole ou la réduction des oxydes d'azote dans les pots catalytiques. Un catalyseur est un composé qui rend possible une réaction chimique mais qui sort indemne de la transformation. Un catalyseur peut agir sur un acte élémentaire ou sur le bilan d'une réaction complexe ; enfin il peut orienter vers une réaction plutôt qu'une autre. La catalyse concerne tous les domaines de la chimie. La catalyse acido-basique concerne le domaine de la chimie organique. Les catalyseurs dans le domaine de la biochimie sont les enzymes qui doivent épouser une forme complémentaire du substrat pour s'adapter à lui, puis présenter un site actif où la réactivité est modifiée. La catalyse homogène est le domaine de la chimie organométallique ; elle concerne un centre métallique dont l'environnement électronique et géométrique est bien défini, ce qui permet de bien contrôler la réaction. La catalyse hétérogène concerne la science des surfaces et des interfaces. Du point de vue industriel, ces catalyseurs sont les plus employés car ils présentent de nombreux sites actifs qui sont utilisés de nombreuses fois de façon consécutive. Comprendre un processus catalytique, c'est aller au delà d'un simple bilan, cela nécessite de décrire les étapes du voyage partant des réactifs et allant vers les produits. Comprendre la catalyse, c'est décrire la réaction dans son environnement. Cela devrait être de plus en plus le cas durant le prochain siècle et cela devrait permettre d'améliorer les performances des catalyseurs déjà connus.
Accès libre

...

x Cacher la playlist

Commandes > x
     

Aucune piste en cours de lecture

 

 

--|--
--|--
Activer/Désactiver le son