Documents pour «modèle standard»

Documents pour "modèle standard"
Affiche du document Les neutrinos dans l'Univers

Les neutrinos dans l'Univers

Daniel VIGNAUD

1h12min36

  • Astronomie, Astrophysique, Recherche spatiale, Géodésie
  • Physique
Notre corps humain contient environ 20 millions de neutrinos issus du big bang, émet quelques milliers de neutrinos liés à sa radioactivité naturelle. Traversé en permanence par 65 milliards de neutrinos par cm2 par seconde venus du Soleil, il a été irradié le 23 février 1987 par quelques milliards de neutrinos émis il y a 150000 ans par l'explosion d'une supernova dans le Grand Nuage de Magellan. Les neutrinos sont également produits dans l'interaction des rayons cosmiques dans l'atmosphère ou dans les noyaux actifs de galaxies… Quelle est donc cette particule présente en abondance dans tout l'Univers où elle joue un rôle-clé ? Inventé par W.Pauli en 1930 pour résoudre le problème du spectre en énergie des électrons dans la désintégration b, le neutrino fut découvert par F.Reines et C.Cowan en 1956, auprès du réacteur nucléaire de Savannah River (Caroline du Sud). Il n'a plus depuis quitté le devant de la scène, que ce soit chez les physiciens des particules, les astrophysiciens ou les cosmologistes. Cette particule élémentaire, sans charge électrique, n'est soumise qu'à l'interaction faible, ce qui lui permet de traverser des quantités de matière importantes sans interagir. En 1938, H.Bethe imaginait que des réactions nucléaires de fusion étaient au coeur de la production d'énergie des étoiles, en premier lieu le Soleil. Dans les années 60, les astrophysiciens se lancent dans la construction de modèles solaires et des expérimentateurs dans la construction de détecteurs pour les piéger. Il a fallu attendre 2002 pour comprendre que le déficit de neutrinos solaires observé (le célèbre "problème des neutrinos solaires") était dû à un phénomène lié à la mécanique quantique, appelé l'oscillation des neutrinos. La mise en évidence de cette oscillation a apporté la preuve décisive que les neutrinos avaient une masse non nulle. Nous ferons le point sur cette particule fascinante après les découvertes récentes.
Accès libre
Affiche du document Casseurs d'atomes : un pas de plus vers le Big Bang

Casseurs d'atomes : un pas de plus vers le Big Bang

Helenka PRZYSIEZNIAK

1h28min26

  • Physique
Les Casseurs d'atomes, plus communément appelés Accélérateurs, sont les outils de tous les jours de nombreux physiciens des particules qui sondent la matière infiniment petite. Il y a de ça un peu plus d'un siècle, en 1894, Albert Michelson - qui étudia le comportement de la lumière - n'aurait jamais imaginé se retrouver devant un monde incroyablement plus complexe qu'il l'aurait cru lorsqu'il déclara que tout ce qu'il restait à faire en physique était de déterminer jusqu'à la sixième décimale les valeurs connues en ce temps là. Il ne se doutait pas que la structure entière de la physique serait complètement révolutionnée dans les 20 années qui allaient suivre. Les premiers accélérateurs sont apparus au début du 20e siècle et ce qui fut dévoilé au fil des années a permis de construire un modèle théorique cohérent, le Modèle Standard (MS). Les particules prédites par ce modèle furent presque toutes observées, les prédictions sur leur comportement furent testées, mais effectivement le plus important manquait et manque toujours. Le boson de Higgs, auquel est associé le champs de Higgs qui permet à toutes les particules d'acquérir une masse, reste encore aujourd'hui inobservé. Les expériences du futur nous permettront de vérifier si cette particule existe vraiment, et si d'autres modèles théoriques au-delà du MS sont viables i.e. la Super Symétrie, l'existence de dimensions supplémentaires. Il faut toutefois garder les pieds sur terre, ou peut-être pas, car la physique des particules aux accélérateurs, résumé sur l'échelle universelle du temps depuis le Big Bang jusqu' aujourd'hui, ne correspond qu'à un tout petit pas. Le terrain à défricher reste encore énorme, et les Casseurs d'atomes joueront un rôle clef dans la compréhension de cet Univers de l'infiniment petit. Je tenterai donc, dans cette présentation, de faire un survol historique de la théorie, des accélérateurs, des découvertes et de parler du futur de la physique aux accélérateurs.
Accès libre
Affiche du document Un regard sur le futur

Un regard sur le futur

Luciano MAIANI

1h12min44

  • Astronomie, Astrophysique, Recherche spatiale, Géodésie
  • Physique
Un regard sur le futur : pouvons-nous comprendre l'infiniment grand à partir de l'infiniment petit ? Les dernières décennies du siècle ont été témoin de progrès extraordinaires dans notre compréhension des constituants ultimes de la matière et des forces qui agissent sur eux. Grâce à l'effort de nombreux scientifiques, nous sommes parvenus à élaborer une « théorie standard » qui décrit et explique tous les phénomènes ainsi observés au coeur du monde des particules élémentaires. Avec la théorie standard, nous pouvons retracer l'histoire de l'Univers en remontant dans le temps, jusqu'à quelques fractions de milliards de secondes après le Big Bang, à un moment où la température de l'Univers s'élevait à un million de milliards de degrés centigrade. A cette époque le plasma primordial qui constituait l'Univers était peuplé de particules que nous ne pouvons produire aujourd'hui seulement dans les accélérateurs de particules les plus puissants en Europe et aux USA. L'évolution de l'Univers a été profondément affectée par les phénomènes qui se déroulèrent alors, et même avant. Ainsi la compréhension des constituants fondamentaux et de leurs interactions est cruciale pour saisir la distribution sur une grande échelle des galaxies, la matière et l'énergie qui le composent, et sa destinée finale. Malgré les progrès, des éléments importants de la microphysique sont encore à l'Etat d'hypothèse. L'existence et les propriétés du « boson de Higgs » ou la nature de la « matière noire » qui constitue l'essentiel de la masse de l'Univers devront être éclaircis par le LHC (Large Hadron Collider), une machine révolutionnaire qui mènera l'Europe à la frontière des hautes énergies. Le LHC est actuellement en construction au CERN (conseil Européen pour la Recherche Nucléaire) à Genève, dans le cadre d'une collaboration internationale, et devrait entrer en activité en 2007. Le LHC et les machines qui succèderont éclaireront plusieurs aspects fondamentaux de notre monde, comme l'existence de dimensions additionnelles à l'espace et aux temps et permettront la synthèse de la Mécanique Quantique et de la Relativité Générale, le problème théorique le plus profond de notre époque.
Accès libre
Affiche du document Sur les traces de la matière dans le cosmos

Sur les traces de la matière dans le cosmos

Réza ANSARI

1h23min39

  • Astronomie, Astrophysique, Recherche spatiale, Géodésie
L'exposé débutera par une présentation synthétique de l'état actuel des connaissances concernant la genèse et l'histoire de l'Univers (modèle du big bang). Nous préciserons le rôle des différentes formes de matière et d'énergie dans l'évolution et la structuration de l'Univers. Ceci nous permettra en particulier d'introduire les concepts de la matière sombre et de l'énergie noire. La plus grande partie de l'exposé sera consacré à un tour d'horizon de quelques unes des méthodes utilisées pour identifier et caractériser les différentes composantes de matière et d'énergie présentes dans l'univers. Nous verrons en particulier comment l'étude des anisotropies du fond diffus micro-ondes permet de contraindre le contenu matériel du cosmos. Ce fond de rayonnement électromagnétique est le vestige du passé chaud de l'Univers et ses infimes anisotropies nous révèlent les clés de la physique de l'univers primordial. Nous montrerons ensuite comment l'observation des supernovae lointaines, véritables feux d'artifices cosmiques, apportent une information complémentaire à travers les contraintes obtenues sur la géométrie globale de l'univers. Enfin, la dernière partie de l'exposé nous amènera à explorer les étoiles à neutrons, ainsi que les trous noirs et leurs disques d'accrétion. Les observations à haute énergie, dans le domaine des rayons X et gamma permettent de lever le voile sur ces objets, sièges des phénomènes les plus violents dans l'univers. Dans les prochaines années, les détecteurs d'ondes gravitationnelles ouvriront peut-être une nouvelle fenêtre d'observation de ces objets insolites.
Accès libre

...

x Cacher la playlist

Commandes > x
     

Aucune piste en cours de lecture

 

 

--|--
--|--
Activer/Désactiver le son